- nature of sediment
- rate of sediment supply
- rate of deposition
- depositional environment
- nature of source rocks
- nature of vertical succession
Master cross sections: With the present land surface as the most natural datum, construct several detailed physical cross sections through the basin to show its geometry and sediment fill.
Stratigraphic sections: Construct a graph, with time along the vertical axis, showing the time correlations of all the major rock units along some generalized traverse across the basin. Such a section includes hiatuses, during which there was non deposition or erosion.
Isopach maps: With some distinctive stratigraphic horizon near the top of the section as datum, draw a contour map showing isopachs (isopachs are loci of equal total sediment thickness) in the basin.
Lithofacies maps: For one or a series of times, draw a map showing distribution of sediment types being deposited at that time.
Ratio maps: Compute things like sand/shale ratio, integrated over the entire section or restricted to some time interval, and plot a contour map of the values.
Paleocurrent maps: For one or a series of times, draw a map showing the direction of paleo-currents in the basin at that time.
Grain-size maps: For the entire basin fill, averaged vertically, or for some stratigraphic interval or time interval, draw a map that shows the areal distribution of sediment grain size. This is especially useful for conglomeratic basins.
Local
Regional
Basin relief can be created mechanically on a regional scale in two very important ways: thermally or flexurally, or by a combination of those two effects). Each of these is discussed briefly below. Keep in mind that basins can also be made just by making mountain ranges, on land or in the ocean, by volcanism.Thermal
If the lithosphere is heated from below, it expands slightly and thus becomes less dense. This less dense lithosphere adjusts isostatically to float higher in the asthenosphere, producing what we see at the Earth’s surface as crustal uplift. If the lithosphere cools back to its original temperature, there’s isostatic subsidence back to the original level.
But suppose that some erosion took place while the crust was elevated. The crust is thinned where the erosion took place (and thickened somewhere else, where there was deposition; that might be far away, at the mouth of some long river system), so when the crust cools again it subsides to a position lower than where it started, thus creating a basin available for filling by sediments.
But the magnitude of crustal lowering by this mechanism is less than is often observed in basins thought to be created thermally. It has therefore been proposed, and widely accepted, that in many cases extensional thinning of the lithosphere accompanies the heating. Then, upon re-cooling, the elevation of the top of the lithosphere is less than before the heating and extension. This kind of subsidence has been invoked to explain many sedimentary basins.