Pages - Menu

Wednesday, July 29, 2015

Carbonate diagenesis


Cements in carbonate rocks are mainly made up of calcium carbonate derived from the host sediment. Lithification of aggregates of carbonate material can occur as eogenetic cementation contemporaneously with deposition in any settings where there is either a lot of seawater being circulated through the sediment or where sedimentation rates are low. Beach-rock may be formed of carbonate debris deposited on the beach that is cemented by calcium carbonate from seawater washing through it in the intertidal to supratidal zone. In warm tropical shallow marine environments the seawater is often saturated with respect to calcium carbonate and cementation can take place on the sea floor forming a hardground or firmground if sedimentation rates are low. The cementation can be localised and related to microbial activity within the sediment, for example, it may be associated with burrows. Colder seawater is undersaturated with calcium carbonate and dissolution of carbonate material can occur. In non-marine environments calcite cementation occurs in both the vadose zone (above the water table) and in the phreatic zone (below the water table). In the vadose environment, for example in caves and in streams, the precipitation of the calcite to form these cements is due to the degassing of water: the resulting deposits are stalactites and stalagmites in caves (or speleothems, the general term for cave deposits), and travertine deposited from surface waters in places such as waterfalls. In soils calcite precipitation forms cements as rhizoliths and calcrete as a result of the evaporation of groundwater and the addition of calcium carbonate as wind-blown dust. Syn-sedimentary precipitation of siderite can occur where there is mixing of seawater and fresh water under reducing conditions: this can happen in coastal marshes. Burial stage (mesogenetic) cementation by calcite largely involves carbonate derived from the dissolution of carbonate grains. These cements are low magnesium calcite and are in the form of bladed crystals that grow out from the grain margins into the pore spaces or as overgrowths, particularly on crystalline fragments of echinoids and crinoids, from which they may develop a poikilotopic fabric.

Compaction effects in limestones: stylolites and bedding planes


Calcite undergoes pressure dissolution under the pressure of a few hundred metres of overburden, forming solution surfaces within the rock known as stylolites. At a small scale (millimetres to centimetres), stylolites are usually highly irregular solution surfaces that are picked out by concentrations of clay, iron oxides or other insoluble components of the rock. Where a stylolite cuts through a fossil it may be possible to determine the amount of calcium carbonate that has been dissolved at the surface. They normally form horizontally in response to overburden pressure, but can also form in response to tectonic pressures at high angles to the bedding. At a larger scale, horizontal pressure solution surfaces within a limestone succession create apparent bedding surfaces that may be very sharply defined by the higher concentration of clay along the surface, but do not necessarily represent a break in sedimentation. This apparent bedding, which is diagenetic in origin, may be more sharply defined in outcrop than true bedding surfaces representing primary changes and breaks in deposition. Pressure solution can result in the removal of large amounts of calcium carbonate and concentrate the clay component of an impure, muddy limestone to leave nodules of limestone in a wavy-bedded mudstone.

Dolomitisation

Dolomite is a calcium magnesium carbonate (CaMg (CO3)2) mineral that is found in carbonate sedimentary rocks of all ages and when the mineral forms more than 75% of the rock it is called a dolostone, although the term dolomite is also often used for the rock as well as for the mineral. The mineral is relatively uncommon in modern depositional environments: it is known to occur in small quantities in arid coastal settings, where its formation may be related to microbial activity. However, these modern examples do not provide an explanation for the thick successions of dolostone that are known from the stratigraphic record and most dolomite is believed to form diagenetically, a process known as dolomitisation. Many dolostones in the stratigraphic record contain fossils that indicate normal marine environments of deposition and show replacement fabrics where material that was clearly originally made up of calcite or aragonite has been wholly or partially replaced by dolomite. The mechanism of formation of dolomite by reaction of seawater and pore water with calcite and aragonite has been the subject of much debate and a number of different models have been proposed, all of which may be applicable in different circumstances. All models have certain things in common: the original rock must be limestone, the water that reacts with it must be marine, or pore water derived from seawater, and there must be abundant, long-term supply of those waters for large-scale dolomitisation to take place. The process of dolomitisation also seems to be favoured by elevated temperatures and by either enhanced or reduced salinities compared with seawater. The mixing-zone model for dolomitisation proposes that where fresh water, which is under-saturated with respect to calcite but over-saturated with respect to dolomite, mixes with marine waters then dolomitisation would occur. Although there may be a theoretical basis for this model, the process has not been observed in any of the many coastal regions around the world where conditions should be favourable. Arid coastal regions where concentrated brines promote dolomitisation have been suggested in the reflux model, but although this may result in formation of dolomite in the sediment within 1 or 2m of the surface, this mechanism does not seem to be capable of generating large volumes of dolomite. It seems more likely that large-scale dolomitisation occurs at some point after burial and hence a number of burial models or seawater models have been proposed. Thick successions of platform limestone can be transformed wholly or partly into dolostone if seawater, or pore-water brines that originated as seawater, can be made to pass through the rock in large quantities for long periods of time. Compaction has been suggested as a potential driving force for fluid transport, but seems unlikely to be capable of producing the quantities of fluids required. Thermally driven circulation, either by a geothermal heat source or by temperature differences between the interior of a platform and seawater, is the most likely candidate for generating long-term flow of the large quantities of fluid required. Topography can also provide a means of forcing water flow through rocks, but although meteoric waters (i.e. derived from rainfall) may provide an abundant flux of fluids, they rarely contain sufficient magnesium to promote dolomitisation. A reversal of the process that causes dolomitisation in association with evaporites can result in dolomite being replaced by calcite. This dedolomitisation occurs where beds of gypsum are dissolved enriching groundwaters in calcium sulphate. The sulphate-rich waters passing through dolostone result in the replacement of dolomite by calcite.

Diagenesis and carbonate petrography

Most carbonate sediments become lithified during diagenesis and can readily be cut to make thinsections: injection of blue resin into the pore spaces is nevertheless commonly carried out in order to make any voids within the rock visible. The blue-dyed resin shows up porosity in carbonate rocks that can either be between the grains (interparticle porosity) or within grains as intraparticle porosity, usually chambers within fossils such as foraminifers, cephalopods and gastropods. Distinguishing between cement and matrix and even between grains and cement is not always straightforward in carbonate rocks because all have the same, or very similar, mineralogy: the morphology of the carbonate material therefore provides most of the important clues as to its origin. Grains within limestone that are biogenic in origin usually have distinctive shapes that reflect the structure of the organism, even if they are only small fragments. Similarly, ooids and peloids are easily recognised in thin-sections. Lithic clasts of limestone and intraclasts have more variable shapes and structures and, because they are in fact pieces of rock, may include areas of cement: distinguishing between the cement within intraclasts and the later cement of the whole rock can sometimes be difficult. Peloids are typically made up of carbonate mud, and must therefore be distinguished from a muddy matrix on the basis of their shape.

Neomorphism

Carbonate mud is the main constituent of carbonate mudstones and wackestones, and can occur as a
matrix in packstones, grainstones and boundstones. Individual grains are clay-sized and therefore cannot be individually seen with a petrographic microscope. Neomorphism (replacement by recystallisation) of carbonate mud to form microcrystalline sparry calcite commonly occurs, and as this results in an increase in crystal size, it may then be possible to see the crystalline form under the microscope: although it may be difficult to resolve individual crystals, the microspar appears as a mass of fine crystalline materials showing different birefringence colours under crossed polars. The birefringence colours of carbonates are high-order pink and green, which may appear to merge into a pale brown if the individual crystals are very small or the magnification is low. Shelly or skeletal material composed of aragonite undergoes replacement by calcite, either by the solution of the aragonite to create a void later filled by calcite, or by a direct mineral replacement. In the former case the internal structure is completely lost, but where the aragonite is transformed into calcite some relics of the original internal structure may be retained, seen as inclusions of organic matter. The neomorphic calcite crystals are larger than the original aragonite crystals, are often slightly brown due to the presence of the organic material and occur as an irregular mosaic occupying the external form of the skeletal material.

Carbonate cements

Cementation ofcarbonate sediment to form a limestone can involve a number of stages of cement formation. The form of eogenetic cements is determined by the position of the sediment relative to the groundwater level. In the phreatic zone, in which all the pore spaces are filled with water, the first stage is the formation of a thin fringe of calcite or aragonite growing perpendicular to the grain boundary out into the pore space: these crystals form a thin layer of approximately equal thickness over the grains and are hence known as isopachous cement. Above the water level, in the intertidal and supratidal zones, the sediment is in the vadose zone and is only periodically saturated with water: the cement forms only where grains are close together within water held by surface tension to form a meniscus, and hence they are called meniscus cements. A bladed, fibrous or acicular morphology is characteristic of these early cements, with the long axes of the crystals oriented perpendicular to the grain edge. Very fine-grained, micritic, cements can also form at this stage. Recrystallisation of these eogenetic cements commonly occurs because if their original mineralogy was either aragonite or high-magnesium calcite they undergo change to low magnesium calcite through time. Many limestones have a cement of sparry calcite that fills in any pore space that is not occupied by an early cement. The interlocking crystals of clear calcite are believed to form during burial diagenesis (mesogenetic cement) from pore waters rich in calcium carbonate. If there are fragments of echinoids or crinoids present in the sediment the sparry cement precipitates as a syntaxial overgrowth and can form poikilotopic fabric as the cement crystals completely envelop a number of grains. The source of the calcium carbonate for these sparry cements may be from the dissolution of aragonite from shelly material or it may come from pressure solution at grain contacts and along stylolites.

Dolomite


Most dolomite occurring in sedimentary rocks is diagenetic in origin, occurring as a replacement of calcite. Although the optical properties of calcite and dolomite are very similar, dolomite commonly occurs as distinctive, small rhomb-shaped crystals that replace the original calcite fabric. Staining the thin section with Alizarin Red-S provides confirmation that the mineral is dolomite (which does not stain pink) as opposed to calcite (which does). Extensive dolomitisation may completely obliterate the primary fabric of the limestone, resulting in a rock that appears in thin-section as a mass of rhombic crystals. The transformation of calcite into dolomite results in a decrease in mineral volume and consequently an increase in porosity.