Monday, February 20, 2017

Download Geoscience Books

Geoscience Books:

We are grateful to Qazi Sohail Imran for providing Geoscience books to our community. Qazi is from Islamabad Pakistan and is a Former Research Geophysicist at King Fahd University of Petroleum and Minerals. He is contributing to his oil and gas community with the believe that "Knowledge is power and knowledge shared is power multiplied".Follow the link above the images to download the books. However if the link is not working or you have any other query, just mention it in comment or email us here , we will fix it for you.

1. Name: Sedimentology and Stratigraphy by Gary Nichols 
Download Here

2. Name: Physical Geology- Earth Revealed. 9th Edition by C.C. Plummer   
     Download Here


3. Name: An Introduction to Structural Geology and Tectonics by Stephen Marshak
    Download Here

4. Name: 3-D Structural Geology by R.H.Groshong
     Download Here

5. Name: Structural Geology of Rocks & Regions 3rd Edition - Davis Reynolds
     Download Here

6. Name: Geological Field Techniques Edited By Angela L. Coe
    Download Here

7. Name: Seismic Stratigraphy, Basin Analysis and Reservoir Characterisation_Vol37       by Paul C.H. Veeken
    Download Here

8. Name: General Dictionary of Geology by Alva Kurniawan, John Mc. Kenzie,                  Jasmine Anita Putri
    Download Here

9. Name: The Handy Geology Answer Book
   Download Here

          

10.   Name: Sedimentary Basin Formation-Presentation
        Download Here

11. Name: Facies Models Response to Sea Level Change by Walker and James
       Dowload Here


12. Name: AAPG Memoir 33 - Carbonate Depositional Environments
      Download here

13. Name: Petroleum Formation and Occurrence by Tissot, B.P. and Welte, D. H        Download Here

14. Name: Basin Analysis-Principles and Applications by Allen     
       
Download Here

                

15. Name: Sedimentary Rocks in the Field by Tucker
         Download Here


16. Name: Exploration Stratigraphy 2nd Edition - Visher
      Download Here

17. Name: Petroleum Geology of Pakistan by Iqbal B. Kadri
      Download Here

18. Name: The Geological Interpretation Of Well Logs by Rider
      Download Here


19. Name: Digital Signal Processing Handbook by Vijay K. Madisetti
      Download Here

20. Name: AAPG Memoir 88 - Giant Hydrocarbon Reservoirs of the World                           Download Here

21. Name: Deep-Water Processes and Facies Models-Implications for Sandstone               Reservoirs by  Dr. Shanmugam
      Download Here

               
      

Friday, February 17, 2017

Earthquake Precursors: Signs Before Earthquakes



Earthquake prediction is the ultimate goal of seismologists. Being able to predict when and where an earthquake will occur could save thousands, if not hundreds of thousands, of lives, over the years. Even after decades of study, earthquake forecasting remains notoriously difficult, however. So what are the signs which occur b
efore 
an earthquake – earthquake precursors – and how useful are they?




About the author (who writes this article): Nusrat Kamal Siddiqui is one of the leading Geoscientists from Pakistan. He has a diverse professional career of being a Petroleum Geologist, Hydrologist and Engineering Geologist, both in Pakistan and overseas. He recently published a book " Petroleum Geology, Basin Architecture and Stratigraphy of Pakistan". Click here for further details about the book.


The Precursors

There are some long-term, medium-term and short-term precursors of seismic activity that cause earthquakes.

The long-term precursors are based on statistical studies and the prediction is probabilistic. The medium-term precursors help in predicting the location of an earthquake to a sufficient degree of accuracy. The short-term precursors of seismic events are indicated by changes in geomagnetic field, changes in gravity field, rising of subsurface temperature and rise in ground radioactivity. Agriculture institutions record subsurface temperature at 20, 50 and 100 cm depth as it is useful for monitoring crop growth. In earthquake-prone areas the temperature starts rising about 700-900 days before the event. This readily available data can be of help.

The short-term precursors are more important as they can be observed by a common man, and happen from a few days before the earthquake to just before it happens. With a reducing lag time these are: rise in water in the wells with increased sediments, sudden increase and decrease in river water flow, disturbance in the reception of radio, television, telephones, water fountains on the high grounds, strange behavior of animals, a sudden jump in the number of deliveries in hospitals and malfunctioning of cell phones. These days cell phones are the most handy and common piece of electronic equipment. A general collapse of this system can be noted by masses, and hence could be a very effective means to take timely mitigation measure. It has been found that about 100 to 150 minutes before the earthquake the cell phones start malfunctioning. However, the humans are very careless by nature and there would be only very few who would be observant enough to note the above precursors.  



It is indeed believed that animals exhibit unusual behavior before an earthquake


In the earthquake-prone areas groups of observant and responsible people (including women - they normally haul the water) may be constituted wherein the list of precursors, in local languages, may be distributed and some training imparted. And this exercise may not 
be left to the authorities, for obvious reasons!

Source: Earthquakes are inevitable, Disasters are not– Mitigation, therefore, is better than Prediction by Nusrat K. Siddiqui



Suggested Readings:

1. A systematic compilation of earthquake precursors
2. Earthquakes: prediction, forecasting and mitigation
3. Earthquake Prediction, Control and Mitigation

Wednesday, February 15, 2017

Historical Anoxic Event and consequences

Anoxic events in Earth's history

Cretaceous Anoxic Event

Sulphidic (or euxinic) conditions, which exist today in many water bodies from ponds to various land-surrounded mediterranean seas such as the Black Sea, were particularly prevalent in the Cretaceous Atlantic but also characterised other parts of the world ocean. In an ice-free sea of these supposed super-greenhouse worlds, oceanic waters were as much as 200 meters higher, in some eras. During the time spans in question, the continental plates are believed to have been well separated, and the mountains we know today were (mostly) future tectonic events meaning the overall landscapes were generally much lower and even the half super-greenhouse climates would have been eras of highly expedited water erosion carrying massive amounts of nutrients into the world oceans fuelling an overall explosive population of microorganisms and their predator species in the oxygenated upper layers.
Detailed stratigraphic studies of Cretaceous black shales from many parts of the world have indicated that two oceanic anoxic events (OAEs) were particularly significant in terms of their impact on the chemistry of the oceans, one in the early Aptian (~120 Ma), sometimes called the Selli Event (or OAE 1a)  after the Italian geologist, Raimondo Selli (1916–1983), and another at the Cenomanian-Turonian boundary (~93 Ma), sometimes called the Bonarelli Event (or OAE 2) after the Italian geologist, Guido Bonarelli (1871–1951). OAE1a lasted for ~1.0 to 1.3 Myr. The duration of OAE2 is estimated to be ~820 kyr based on a high-resolution study of the significantly expanded OAE2 interval in southern Tibet, China.
  • Insofar as the Cretaceous OAEs can be represented by type localities, it is the striking outcrops of laminated black shale within the various coloured clay-stones and pink and white limestone near the town of Gubbio in the Italian Apennines that are the best candidates.
  • The 1-meter thick black shale at the Cenomanian-Turonian boundary that crops out near Gubbio is termed the ‘Livello Bonarelli’ after the man who first described it in 1891.
More minor oceanic anoxic events have been proposed for other intervals in the Cretaceous (in the Valanginian, Hauterivian, Albian and Coniacian–Santonian stages), but their sedimentary record, as represented by organic-rich black shales, appears more parochial, being dominantly represented in the Atlantic and neighbouring areas, and some researchers relate them to particular local conditions rather than being forced by global change.

Jurassic

The only oceanic anoxic event documented from the Jurassic took place during the early Toarcian (~183 Ma). Because no DSDP (Deep Sea Drilling Project) or ODP (Ocean Drilling Program) cores have recovered black shales of this age there being little or no Toarcian ocean crust remaining in the world ocean the samples of black shale primarily come from outcrops on land. These outcrops, together with material from some commercial oil wells, are found on all major continents and this event seems similar in kind to the two major Cretaceous examples.

Paleozoic

The boundary between the Ordovician and Silurian periods is marked by repetitive periods of anoxia, interspersed with normal, oxic conditions. In addition, anoxic periods are found during the Silurian. These anoxic periods occurred at a time of low global temperatures (although CO2 levels were high), in the midst of a glaciation.
Jeppsson (1990) proposes a mechanism whereby the temperature of polar waters determines the site of formation of downwelling water. If the high latitude waters are below 5 °C (41 °F), they will be dense enough to sink; as they are cool, oxygen is highly soluble in their waters, and the deep ocean will be oxygenated. If high latitude waters are warmer than 5 °C (41 °F), their density is too low for them to sink below the cooler deep waters. Therefore, thermohaline circulation can only be driven by salt-increased density, which tends to form in warm waters where evaporation is high. This warm water can dissolve less oxygen, and is produced in smaller quantities, producing a sluggish circulation with little deep water oxygen. The effect of this warm water propagates through the ocean, and reduces the amount of CO2 that the oceans can hold in solution, which makes the oceans release large quantities of CO2 into the atmosphere in a geologically short time (tens or thousands of years). The warm waters also initiate the release of clathrates, which further increases atmospheric temperature and basin anoxia. Similar positive feedback operate during cold-pole episodes, amplifying their cooling effects.
The periods with cold poles are termed "P-episodes" (short for primo), and are characterised by bioturbated deep oceans, a humid equator and higher weathering rates, and terminated by extinction events for example, the Ireviken and Lau events. The inverse is true for the warmer, oxic "S-episodes" (secundo), where deep ocean sediments are typically graptolitic black shales. A typical cycle of secundo-primo episodes and ensuing event typically lasts around 3 Ma.
The duration of events is so long compared to their onset because the positive feedback must be overwhelmed. Carbon content in the ocean-atmosphere system is affected by changes in weathering rates, which in turn is dominantly controlled by rainfall. Because this is inversely related to temperature in Silurian times, carbon is gradually drawn down during warm (high CO2) S-episodes, while the reverse is true during P-episodes. On top of this gradual trend is overprinted the signal of Milankovic cycles, which ultimately trigger the switch between P- and S- episodes.
These events become longer during the Devonian; the enlarging land plant biota probably acted as a large buffer to carbon dioxide concentrations.
The end-Ordovician Hirnantian event may alternatively be a result of algal blooms, caused by sudden supply of nutrients through wind-driven upwelling or an influx of nutrient-rich meltwater from melting glaciers, which by virtue of its fresh nature would also slow down oceanic circulation.

Archean and Proterozoic

Throughout most of Earth's history, it was thought that oceans were largely oxygen-deficient. During the Archean, euxinia was largely absent because of low availability of sulphate in the oceans, but during the Proterozoic, it would become more common.

Consequences of Oceanic Anoxic Event

Oceanic anoxic events have had many important consequences. It is believed that they have been responsible for mass extinctions of marine organisms both in the Paleozoic and Mesozoic. The early Toarcian and Cenomanian-Turonian anoxic events correlate with the Toarcian and Cenomanian-Turonian extinction events of mostly marine life forms. Apart from possible atmospheric effects, many deeper-dwelling marine organisms could not adapt to an ocean where oxygen penetrated only the surface layers.
An economically significant consequence of oceanic anoxic events is the fact that the prevailing conditions in so many Mesozoic oceans has helped produce most of the world's petroleum and natural gas reserves. During an oceanic anoxic event, the accumulation and preservation of organic matter was much greater than normal, allowing the generation of potential petroleum source rocks in many environments across the globe. Consequently, some 70 percent of oil source rocks are Mesozoic in age, and another 15 percent date from the warm Paleogene: only rarely in colder periods were conditions favourable for the production of source rocks on anything other than a local scale.

Atmospheric effects

A model put forward by Lee Kump, Alexander Pavlov and Michael Arthur in 2005 suggests that oceanic anoxic events may have been characterised by up-welling of water rich in highly toxic hydrogen sulphide gas, which was then released into the atmosphere. This phenomenon would probably have poisoned plants and animals and caused mass extinctions. Furthermore, it has been proposed that the hydrogen sulphide rose to the upper atmosphere and attacked the ozone layer, which normally blocks the deadly ultraviolet radiation of the Sun. The increased UV radiation caused by this ozone depletion would have amplified the destruction of plant and animal life. Fossil spores from strata recording the Permian-Triassic extinction event show deformities consistent with UV radiation. This evidence, combined with fossil biomarkers of green sulphur bacteria, indicates that this process could have played a role in that mass extinction event, and possibly other extinction events. The trigger for these mass extinctions appears to be a warming of the ocean caused by a rise of carbon dioxide levels to about 1000 parts per million.

Ocean chemistry effects

Reduced oxygen levels are expected to lead to increased seawater concentrations of redox-sensitive metals. The reductive dissolution of iron-manganese oxyhydroxides in seafloor sediments under low-oxygen conditions would release those metals and associated trace metals. Sulphate reduction in such sediments could release other metals such as barium. When heavy-metal-rich anoxic deep water entered continental shelves and encountered increased O2 levels, precipitation of some of the metals, as well as poisoning of the local biota, would have occurred. In the late Silurian mid-Pridoli event, increases are seen in the Fe, Cu, As, Al, Pb, Ba, Mo and Mn levels in shallow-water sediment and microplankton; this is associated with a marked increase in the malformation rate in chitinozoans and other microplankton types, likely due to metal toxicity. Similar metal enrichment has been reported in sediments from the mid-Silurian Ireviken event.

Oceanic Anoxic Event (OAE)

What is Oceanic Anoxic Event?

Oceanic anoxic event or anoxic event (anoxic conditions) allude to interims in the Earth's past where parts of seas get to be distinctly exhausted in oxygen (O2) at profundities over a substantial geographic region. Amid some of these occasions, euxinia, waters that contained H2S hydrogen sulphide, developed. Although anoxic event have not occurred for a huge number of years, the land record demonstrates that they happened commonly previously. Anoxic event harmonised with a few mass eradications and may have added to them. These mass eliminations incorporate some that geobiologists use as time markers in biostratigraphic dating. Many geologists trust maritime anoxic event are unequivocally connected to abating of sea flow, climatic warming, and lifted levels of nursery gasses. Scientists have proposed improved volcanism (the arrival of CO2) as the "focal outer trigger for euxinia".

Backgroud of Oceanic Anoxic Event

The concept of the oceanic anoxic event (OAE) was first proposed in 1976 by Seymour Schlanger (1927–1990) and geologist Hugh Jenkyns and arose from discoveries made by the Deep Sea Drilling Project (DSDP) in the Pacific Ocean. It was the finding of black carbon-rich shales in Cretaceous sediments that had accumulated on submarine volcanic plateaus (Shatsky Rise, Manihiki Plateau), coupled with the fact that they were identical in age with similar deposits cored from the Atlantic Ocean and known from outcrops in Europe - particularly in the geological record of the otherwise limestone-dominated Apennines chain in Italy - that led to the realisation that these widespread similar strata recorded highly unusual oxygen-depleted conditions in the world ocean during several discrete periods of geological time.
Sedimentological investigations of these organic-rich sediments, which have continued to this day, typically reveal the presence of fine laminations undisturbed by bottom-dwelling fauna, indicating anoxic conditions on the sea floor, believed to be coincident with a low lying poisonous layer of hydrogen sulphide. Furthermore, detailed organic geochemical studies have recently revealed the presence of molecules (so-called biomarkers) that derive from both purple sulphur bacteria and green sulphur bacteria: organisms that required both light and free hydrogen sulphide (H2S), illustrating that anoxic conditions extended high into the illuminated upper water column.
There are currently several places on earth that are exhibiting the features of anoxic events on a localised scale such as algal/bacterial blooms and localised "dead zones". Dead zones exist off the East Coast of the United States in the Chesapeake Bay, in the Scandinavian strait Kattegat, the Black Sea (which may have been anoxic in its deepest levels for millennia, however), in the northern Adriatic as well as a dead zone off the coast of Louisiana. The current surge of jellyfish worldwide is sometimes regarded as the first stirrings of an anoxic event. Other marine dead zones have appeared in coastal waters of South America, China, Japan, and New Zealand. A 2008 study counted 405 dead zones worldwide.
This is a recent understanding. This picture was only pieced together during the last three decades. The handful of known and suspected anoxic events have been tied geologically to large-scale production of the world's oil reserves in worldwide bands of black shale in the geologic record. Likewise the high relative temperatures believed linked to so called "super-greenhouse events".

Euxinia

Oceanic anoxic events with euxinic (i.e. sulphide) conditions have been linked to extreme episodes of volcanic out-gassing. Thus, volcanism contributed to the buildup of CO2 in the atmosphere, increased global temperatures, causing an accelerated hydrological cycle that introduced nutrients to the oceans to stimulate planktonic productivity. These processes potentially acted as a trigger for euxinia in restricted basins where water-column stratification could develop. Under anoxic to euxinic conditions, oceanic phosphate is not retained in sediment and could hence be released and recycled, aiding continued high productivity.

Mechanism

Temperatures throughout the Jurassic and Cretaceous are generally thought to have been relatively warm, and consequently dissolved oxygen levels in the ocean were lower than today making anoxia easier to achieve. However, more specific conditions are required to explain the short-period (less than a million years) oceanic anoxic events. Two hypotheses, and variations upon them, have proved most durable.
One hypothesis suggests that the anomalous accumulation of organic matter relates to its enhanced preservation under restricted and poorly oxygenated conditions, which themselves were a function of the particular geometry of the ocean basin: such a hypothesis, although readily applicable to the young and relatively narrow Cretaceous Atlantic (which could be likened to a large-scale Black Sea, only poorly connected to the World Ocean), fails to explain the occurrence of coeval black shales on open-ocean Pacific plateaus and shelf seas around the world. There are suggestions, again from the Atlantic, that a shift in oceanic circulation was responsible, where warm, salty waters at low latitudes became hypersaline and sank to form an intermediate layer, at 500 to 1,000 m (1,640 to 3,281 ft) depth, with a temperature of 20 °C (68 °F) to 25 °C (77 °F).
The second hypothesis suggests that oceanic anoxic events record a major change in the fertility of the oceans that resulted in an increase in organic-walled plankton (including bacteria) at the expense of calcareous plankton such as coccoliths and foraminifera. Such an accelerated flux of organic matter would have expanded and intensified the oxygen minimum zone, further enhancing the amount of organic carbon entering the sedimentary record. Essentially this mechanism assumes a major increase in the availability of dissolved nutrients such as nitrate, phosphate and possibly iron to the phytoplankton population living in the illuminated layers of the oceans.
For such an increase to occur would have required an accelerated influx of land-derived nutrients coupled with vigorous upwelling, requiring major climate change on a global scale. Geochemical data from oxygen-isotope ratios in carbonate sediments and fossils, and magnesium/calcium ratios in fossils, indicate that all major oceanic anoxic events were associated with thermal maxima, making it likely that global weathering rates, and nutrient flux to the oceans, were increased during these intervals. Indeed, the reduced solubility of oxygen would lead to phosphate release, further nourishing the ocean and fuelling high productivity, hence a high oxygen demand - sustaining the event through a positive feedback.
Here is another way of looking at oceanic anoxic events. Assume that the earth releases a huge volume of carbon dioxide during an interval of intense volcanism; global temperatures rise due to the greenhouse effect; global weathering rates and fluvial nutrient flux increase; organic productivity in the oceans increases; organic-carbon burial in the oceans increases (OAE begins); carbon dioxide is drawn down due to both burial of organic matter and weathering of silicate rocks (inverse greenhouse effect); global temperatures fall, and the ocean–atmosphere system returns to equilibrium (OAE ends).
In this way, an oceanic anoxic event can be viewed as the Earth’s response to the injection of excess carbon dioxide into the atmosphere and hydrosphere. One test of this notion is to look at the age of large igneous provinces (LIPs), the extrusion of which would presumably have been accompanied by rapid effusion of vast quantities of volcanogenic gases such as carbon dioxide. Intriguingly, the age of three LIPs (Karoo-Ferrar flood basalt, Caribbean large igneous province, Ontong Java Plateau) correlates uncannily well with that of the major Jurassic (early Toarcian) and Cretaceous (early Aptian and Cenomanian–Turonian) oceanic anoxic events, indicating that a causal link is feasible.

Occurrence

Oceanic anoxic events most commonly occurred during periods of very warm climate characterised by high levels of carbon dioxide (CO2) and mean surface temperatures probably in excess of 25 °C (77 °F). The Quaternary levels, the current period, are just 13 °C (55 °F) in comparison. Such rises in carbon dioxide may have been in response to a great out-gassing of the highly flammable natural gas (methane) that some call an "oceanic burp". Vast quantities of methane are normally locked into the Earth's crust on the continental plateaus in one of the many deposits consisting of compounds of methane hydrate, a solid precipitated combination of methane and water much like ice. Because the methane hydrates are unstable, except at cool temperatures and high (deep) pressures, scientists have observed smaller "burps" due to tectonic events. Studies suggest the huge release of natural gas could be a major climatological trigger, methane itself being a greenhouse gas many times more powerful than carbon dioxide. However, anoxia was also rife during the Hirnantian (late Ordovician) ice age.
Oceanic anoxic events have been recognised primarily from the already warm Cretaceous and Jurassic Periods, when numerous examples have been documented, but earlier examples have been suggested to have occurred in the late Triassic, Permian, Devonian (Kellwasser event), Ordovician and Cambrian.
The Paleocene-Eocene Thermal Maximum (PETM), which was characterised by a global rise in temperature and deposition of organic-rich shales in some shelf seas, shows many similarities to oceanic anoxic events.
Typically, oceanic anoxic events lasted for less than a million years, before a full recovery.

Friday, February 3, 2017

The Messinian Salinity Crisis


You will have heard of The Messinian Salinity Crisis no doubt. From learned articles, geology textbooks, probably lectures at your college or University. Or possibly not. This was not always the hot topic it is now. In fact, the very idea of this happening, was for a while, challenged, even ridiculed. It seemed too incredible that this could happen as it did and Dessication/Flood theories took time to gain traction. But, if you had heard about it, you would remember that The Messinian Salinity Crisis, was a time when the Mediterranean Sea, very much as we know it today, evaporated – dried out, almost completely.



You will have heard of the rates of desiccation, influx and yet more desiccation, repeated in endless cycles over tens, even hundreds of thousands of years. On a human temporal scale, this would have been a long drawn out affair, covering a time hundreds of generations deep, more than the span of Homo sapiens existence. In Geologic terms however, it was a string of sudden events. Of incredibly hot and arid periods followed by rapid ingress of waters, either via spillways through what is now modern day Morocco and the southern Iberian peninsular, or headlong through a breach in the sill between the Pillars of Heracles, the modern day Straights of Gibraltar.

There were prolonged periods of dessication, of desolate landscapes beyond anything seen today in Death Valley or The Afar Triangle. These landscapes were repeatedly transgressed by brackish waters from storm seasons far into the African and Eurasian interiors, or the Atlantic, and these in turn dried out. Again and again this happened. It had to be so because the vast deposits of rock salt, gypsum and anhydrites could not have been emplaced in a single evaporite event. The salt deposits in and around the Mediteranean today represent fifty times the current capacity of this great inland sea. You may have heard too of the variety of salts production, as agglomerating crystals fell from the descending surface to the sea floor, or as vast interconnected hypersaline lakes left crystalline residues at their diminishing margins, as forsaken remnant sabkhas, cut off from the larger basins, left behind acrid dry muds of potassium carbonates – the final arid mineral residue of the vanished waters.

Just under six million years ago, Geologic processes isolated what was left of the ancient Tethys ocean, the sea we know as the Mediterranean, home to historic human conflicts and marine crusades of Carthage, Rome, Athens and Alexandria, a Sea fringed by modern day Benidorm, Cyprus, Malta and Monaco. At a time 5.96 million years ago – evaporation outpaced replenishment. Indeed, just as it does today, but without the connecting seaway to replenish losses. Inexorable tectonic activity first diverted channels, then – sealed them. Cut off from the Atlantic in the West, water levels fell, rose briefly and fell again, and again. The mighty Nile - a very different geophysical feature of a greater capacity than today, and the rivers of Europe cut down great canyons hundreds and thousands of metres below present Eustatic sea and land surface levels, as seismic cross sections show in staggering detail. The cores taken at depth in the Mediterranean, show Aeolian sands above layers of salt, fossiliferous strata beneath those same salts, all indicating changing environments. The periods of blackened unshifting desert varnished floors and bleached playas, decades and centuries long, were punctuated often by catastrophic episodes, with eroded non conformable surfaces of winnowed desert pavement, toppled ventifracts, scours and rip up clasts. Species of fossilised terrestrial plant life, scraping an arid existence have been found, thousands of meters down, in the strata of the Mediterranean sea floor.
 


There is much evidence too, in the uplifted margins of Spain, France, and Sicily, of those hostile millennia when the sea disappeared. Incontrovertible evidence, painstakingly gathered, analysed and peer reviewed, demonstrates via the resources of statistical analysis, calculus and geophysical data that the Messinian Salinity Crisis was a period during the Miocene wherein the geology records a uniquely arid period of repeated partial and very nearly complete desiccation of the Mediterranean Sea over a period of approximately 630,000 years. But for the Geologist, the story doesn’t end there. The Geologists panoptic, all seeing third eye, sees incredible vistas and vast panoramas. Of a descent from the Alpine Foreland to the modern day enclave of Monaco, gazing out southwards from a barren, uninhabited and abandoned raised coast to deep dry abyssal plains, punctuated by exposed chasms, seamounts and ridges, swirling and shifting so slowly in a distant heat haze. A heat haze produced by temperatures far above any recorded by modern man and his preoccupation with Global Warming. An unimaginable heat sink would produce temperatures of 70 to 80 degrees Celsius at 4000M depth within the basins. 




Looking down upon this Venusian landscape, the sun might glint on remaining lakes and salt flats so very far away and so very much farther below. Hills and valleys, once submerged, would be observed high and dry – from above, as would the interconnecting rivers of bitter waters hot enough to slowly broil any organism larger than extremophile foraminifer. All this, constantly shimmering in the relentless heat. Only the imagination of the geologist could see the vast, hellish, yet breathtaking landscape conjured up by the data and the rock record. And finally, the Geologist would visualise a phenomenon far greater in scope and magnitude than any Biblical flood – The Zanclean Event.
Also known as The Zanclean Deluge, when the drought lasting over half a million years was finally ended as the Atlantic Ocean breached the sill/land bridge between Gibraltar and North West Africa. Slowly perhaps at first until a flow a thousand times greater than the volumetric output of the Amazon cascaded down the slopes to the parched basins. Proximal to the breach, there would be a deafening thunderous roar and the ground would tremor constantly, initially triggering great avalanches above and below the Eustatic sea level as the far reaching and continuous concussion roared and rumbled on, and on, and on. For centuries great cataracts and torrents of marine waters fell thousands of metres below and flowed thousands of kilometers across to the East. Across to the abyssal plains off the Balearics, to the deeps of the Tyrrhenian and Ionian seas, into the trenches south of the Greek Islands and finally up to the rising shores of The Lebanon. The newly proximal waters to the final coastal reaches and mountains that became islands, must have had a climatological effect around the margins of the rejuvenated Mediterranean. Flora and Fauna both marine and terrestrial will have recolonised quickly. Species may have developed differently, post Zanclean, on the Islands. And in such a short period, there must surely have been earthquakes and complex regional depression and emergence. Isostacy compensated for the trillions of cubic meters of transgression waters that now occupied the great basins between the African and Eurasian plates, moving the land, reactivating ancient faults and within and marginal to the great inland sea, a region long active with convergent movements of a very different mechanism.
Hollywood and Pinewood have yet to match the imagination of the Earth Scientist, of the many chapters of Earths dynamic history held as fully tangible concepts to the men and women who study the rocks and the stories they tell. The movies played out in the mind of the geologist are epic indeed and – as we rightly consider the spectre of Global Warming, consider too the fate of future populations (of whatever evolved species) at the margins of the Mediterranean and the domino regions beyond, when inexorable geologic processes again isolate that benign, sunny holiday sea. Fortunately, not in our lifetime, but that of our far off descendants who will look and hopefully behave very differently from Homo Sapiens.

Note: This blog is written and contributed by Paul Goodrich. You can also contribute your blog or article on our website. See guidelines here.