Carbonate Petrography

Carbonate petrography is the study of limestones, dolomites and associated deposits under optical or electron microscopes greatly enhances field studies or core observations and can provide a frame of reference for geochemical studies.

25 strangest Geologic Formations on Earth

The strangest formations on Earth.

What causes Earthquake?

Of these various reasons, faulting related to plate movements is by far the most significant. In other words, most earthquakes are due to slip on faults.

The Geologic Column

As stated earlier, no one locality on Earth provides a complete record of our planet’s history, because stratigraphic columns can contain unconformities. But by correlating rocks from locality to locality at millions of places around the world, geologists have pieced together a composite stratigraphic column, called the geologic column, that represents the entirety of Earth history.

Folds and Foliations

Geometry of Folds Imagine a carpet lying flat on the floor. Push on one end of the carpet, and it will wrinkle or contort into a series of wavelike curves. Stresses developed during mountain building can similarly warp or bend bedding and foliation (or other planar features) in rock. The result a curve in the shape of a rock layer is called a fold.

What is pollen?

Pollen is the male gametophyte of seed plants. Both gymnosperms (cone-bearing plants) and angiosperms (blooming plants) produce dust as a feature of sexual generation. In gymnosperms dust is created in microsporangiate cones (male cones or dust cones), while in angiosperms dust is delivered in the anthers (some piece of the stamen inside of the blossom). Every dust grain ordinarily comprises of one to a couple of cells. The dust's mass grain comprises of two layers, the exine (external divider) and intine (internal divider). The exine may be smooth or ornamented with spines, warts, granules, pores or wrinkles. The particular ornamentation allows the distinguishing proof of the dust grains. 

Dust is essentially scattered by creepy crawlies or wing. Wind-pollinated plants are called anemophilous, while creepy crawly pollinated plants are called entimophilous. It is the wind-pollinated plants that is the reason for anguish to numerous who are dust touchy. 

At the point when dust is discharged by wind-pollinated plants, just a little percent achieves an open shame or female cone. At the correct season, dust can be abundant to the point that billows of it can be seen radiating from vegetation exasperates by wind or shaking. Albeit a lot of this dust settles near the source, some is conveyed by long separations by the wind.

How can different pollen types be recognised?

Dust is the male gametophyte of seed plants. Both gymnosperms (cone-bearing plants) and angiosperms (blooming plants) produce dust as a feature of sexual generation. In gymnosperms dust is created in microsporangiate cones (male cones or dust cones), while in angiosperms dust is delivered in the anthers (some piece of the stamen inside of the blossom). Every dust grain ordinarily comprises of one to a couple of cells. The dust's mass grain comprises of two layers, the exine (external divider) and intine (internal divider). The exine may be smooth or ornamented with spines, warts, granules, pores or wrinkles. The particular ornamentation allows the distinguishing proof of the dust grains. 

Dust is essentially scattered by creepy crawlies or wing. Wind-pollinated plants are called anemophilous, while creepy crawly pollinated plants are called entimophilous. It is the wind-pollinated plants that is the reason for anguish to numerous who are dust touchy. 

At the point when dust is discharged by wind-pollinated plants, just a little percent achieves an open shame or female cone. At the correct season, dust can be abundant to the point that billows of it can be seen radiating from vegetation exasperates by wind or shaking. Albeit a lot of this dust settles near the source, some is conveyed by long separations by the wind.

Pollen in Palynology


Palynomorphs are extensively characterized as natural walled microfossils somewhere around 5 and 500 micrometers in size. They are extricated from sedimentary shakes and dregs centers both physically, by ultrasonic treatment and wet sieving, and artificially, by concoction assimilation to evacuate the non-natural division. Palynomorphs may be made out of natural material, for example, chitin, pseudochitin and sporopollenin. Palynomorphs that have a scientific classification depiction are now and then alluded to as palynotaxa. 

Palynomorphs structure a topographical record of significance in deciding the sort of ancient life that existed at the time the sedimentary development was set down. Accordingly, these microfossils give critical hints to the predominant climatic states of the time. Their paleontological utility gets from a wealth numbering in a large number of cells per gram in natural marine stores, notwithstanding when such stores are by and large not fossiliferous. Palynomorphs, on the other hand, for the most part have been devastated in changeable or recrystallized rocks. 

Ordinarily, palynomorphs are dinoflagellate sores, acritarchs, spores, dust, growths, scolecodonts (scleroprotein teeth, jaws and related components of polychaete annelid worms), arthropod organs, (for example, bug mouth parts), chitinozoans and microforams. Palynomorph minute structures that are inexhaustible in many silt are impervious to routine dust extraction including solid acids and bases, and acetolysis, or thickness detachment.

Geology: Definitely NOT a Boring Science!!

I recently shifted my major in college to geoscience so that I could finally pursue a long-time, childhood interest of mine: paleontology. I love paleontology. I absolutely adore the idea of studying ancient creatures that are long-extinct, and yet are the precursors of life on Earth today. I think our knowledge of evolution is truthfully amazing, and the thought that there is a field of science that studies evolution in a broad context is awesome to me. Paleontology has strong (and obvious) ties to geology (because you have to dig the damned fossils out of the dirt to get to them), and so there is quite a lot to learn about the rocks you’ll be digging in before you can get to the “goods”, so to speak. What’s actually the most surprising is that there is a rather staggering amount one can learn from studying geology; there’s more to it than just rocks!

With that thought in mind, it always interested me that most people think of geology as being one of the more “boring” sciences. I really have no way of relating to the idea that any field of science is boring, and so this line of thought really intrigues me from a sort of interpersonal academic kind of direction. Whenever I hear the words “geology is boring” I am always the first to jump up and ask: “How could volcanoes, continental drift, catastrophic disasters and mountain building be boring? It’s awesome!” Usually when I say that sort of thing, the response of “well yeah, those things are cool, but geology itself is really boring” is usually what I get in return. I’m always a little dumbfounded by that response. In essence, all of those things are what make geology REALLY awesome and fun to study, making it worthy of serious research as one of the hard sciences, but people usually don’t think of those things when they think of geology, and there are a few reasons for that (that I will get to later). For this blog posting, I want to begin by covering what geology is and why it is an important science (also illustrating along the way why it is that geology is awesome), and then I want to wrap this up with my thoughts on why many people don’t share my enthusiasm for it.
 Do you know what this is? Do you know why it looks that way?
Understanding geological processes is interesting for many reasons. The academic interest of just wanting to know more about the world is one of the big attractions for many people to get into the field, as studying geology can give a researcher a lot of insight into the processes that have built the geography of the planet we live on in a very interesting deep time perspective. Geology gives a certain amount of deep context and meaning to things that we might just normally look at as, let’s say, interesting formations on a streambed, or something. Studying the rocks of the Earth might seem like a pretty basic and almost boring science, but it gives deep insight into things such as volcanism or erosion, forces that shape the world around us even today.
                     
On fire: Kawika Singson was shooting in the volcanoes of Hawaii, which was so hot his tripod and shoes caught alight
The science of geology also allows scientists to study more outwardly exciting topics such as volcanism, making those oh-so-awesome lava flows we see on National Geographic every now and again that much more exciting for a very simple reason: we can not only know, but inform people as to why that happens. It changed your perspective on your home planet when you realize that there are oceans of molten rock beneath your feet, heated by immense pressure, blasting through the surface from time to time. In understanding volcanism, one also begins to understand plate tectonics. Think about the idea of plate tectonics for a minute; the surface of the Earth being broken up into multiple gigantic plates of rock is still a new idea (comparatively speaking), and continental drift is fascinating in its own right. Just knowing a little about the theory of plate tectonics really takes your mind into a sort of psychological time-warp, because you suddenly realize that your world is dynamic, and has been changing for hundreds of millions, even BILLIONS of years. That kind of perspective on time is brought to you courtesy of your friendly neighborhood geologist.

Figuring out the ages of rocks also falls under the blanket of geological science. This is one of the places where geology crosses over into two other fields, these being physics and chemistry. To know the age of a rock, one needs to take a sample of the rock and vaporize it in a mass spectrometer so that one can read the spectral lines to determine its chemical content. The kind of understanding required to comprehend those lines of color (or lack thereof in terms of absorption lines) requires an understanding of physics with direct reference to atomic structure and electron orbitals; this also requires knowledge of chemistry to really grasp exactly what that sample was made of. The dating of rocks usually falls into one of two columns: absolute dating and relative dating. Absolute dating relies on the ratio of original to what are usually called “daughter” isotopes within a given sample of rock as unstable isotopes of many elements decay over time. The understanding of why those atoms decay the way they do requires another venture into physics to understand quantum tunneling and the Weak Nuclear Force, fields of research that are fascinating in their own right. Erosion, which is another phenomenon that geologists study, is often influenced not only by mechanical factors such as landslides, rushing rivers, etc. (which have gravity involved in their processes, which requires another aside into physics) but also by chemical factors, which requires a geologist to more fully delve into chemistry. In this way we can see geology as being a science that is fundamentally intertwined with other major sciences, creating a blend of knowledge that many might not imagine was originally there.

But physics and chemistry are not the only sciences contributing to greater geological knowledge; astronomy has something to say, as well. Some geological processes, like the erosion of a coastal cliff-face due to the pounding of the waves, have astronomical machinery at work. The tides are driven by the gravitational attraction of the Moon on the Earth’s oceans, causing large bodies of water to oscillate in tides that help shape and/or destroy different features on coastlines everywhere. The noticeable gravitational tug on our tiny world from both the Sun and Moon may also play a role in how tectonic plates move and help further shape the planet we live on. Many geologists also study climate, both ancient and modern, which requires at least some understanding of things like the solar wind, atmospheric chemical composition, etc. Though astronomy may seem far away from everyday geologic study, it sometimes stands at the forefront.

The study of geology also yields clues as to how and why certain organisms evolve the way they did. We have to keep in mind here that biological evolution is not only driven by things like predation and sex, but also by climate, weather, erosion, uplift, deposition, ocean currents (which can be changed due to the movement of tectonic plates) and many other factors that have their roots in geology. While the slow uplift of a mountain range might not seem like it would effect such a plastic and adaptable thing such as life, that mountain range may one day splinter a single population of organisms into two, three, or four different groups, giving evolution lots to work with and do its magic on. Paleontology, with these thoughts in mind, is sort of where geology and biology collide and create a science that is both and neither at the same time. In my own opinion, it is the interrelatedness of geology with all the other sciences that makes it so interesting and magnificent as its own study.

Geology also has a ton of subfields, such as:





So why don’t more people get really excited about geology shows on TV, geology lectures, or anything else related to such a fascinating science? I think the author of the “For Dummies” edition on Geology said it best. The author mentioned that rocks are everyday things, and so we don’t really think about them as being important, because they are essentially everywhere. A geologist might tell you something truly amazing, but because of that association with the mundane it might not be paid attention to, whereas an astronomer can say something relatively mundane about their own field and be thought of as sharing truthfully groundbreaking information simply because stars are far outside our everyday experience (other than twinkling in the night sky, that is). We associate geology with the mundane, and so, to us, it is immensely boring. I think we have also built a cultural picture of what a geologist is, as well. We picture geologists as boring, verbose little men that say a lot of big words, and to us that is unappealing. In a way, we’ve done that with all the sciences by constantly depicting scientists as often short-sighted and socially inept people wearing labcoats and stinking of Firefly fandom. In a way, interest in geology suffers from social conceptions of what geology is and what geologists are, but it also suffers because rocks are freakin’ everywhere, and looking at a rock is almost never fun.
 Sure isn’t boring to me.

Just a thought.

Stratigraphy: Making sense of chaos

What is Stratigraphy?

Stratigraphy- The branch of geology that seeks to understand the geometric relationships between different rock layers (called strata), and to interpret the history represented by these rock layers.

Public Domain Image by the US Dept. of Interior.

Contact- A boundary that separates different strata or rock units.
Steno's Laws of Stratigraphy

Image from J. P. Trap: berømte danske mænd og kvinder, 1868

Nicholas Steno (1638-1686) was a Danish-born pioneer of geology, and is considered to be the father of stratigraphy.

Nicholas Steno's observations of rocks layers suggested that geology is not totally chaotic.  Rather, the rock layers preserve a chronological record of Earth history and past life.

He developed three fundamental principles of stratigraphy, now known as Steno's Laws:

1) Law of Original Horizontality– Beds of sediment deposited in water form as horizontal (or nearly horizontal) layers due to gravitational settling.


2) Law of Superposition– In undisturbed strata, the oldest layer lies at the bottom and the youngest layer lies at the top.

3) Law of Lateral Continuity– Horizontal strata extend laterally until they thin to zero thickness (pinch out) at the edge of their basin of deposition.
Other Important Principles of Stratigraphy

4) Law of Cross-Cutting Relationships– An event that cuts across existing rock is younger than that disturbed rock.  This law was developed by Charles Lyell (1797-1875).



5) Principle of Inclusion– Fragments of rock that are contained (or included) within a host rock are older than the host rock.
Unconformities
Unconformity – A surface that represents a very significant gap in the geologic rock record (due to erosion or long periods of non-deposition).
There are 3 main types of unconformities:
1) Disconformity – A contact representing missing rock between sedimentary layers that are parallel to each other.  Since disconformities are parallel to bedding planes, they are difficult to see in nature.

2) Angular Unconformity – A contact in which younger strata overlie an erosional surface on tilted or folded rock layers.  This type of unconformity is easy to identify in nature.
Image provided by FCIT. Original image from Textbook of Geology by Sir Archibald Geikie (1893).
3) Nonconformity – A contact in which an erosion surface on plutonic or metamorphic rock has been covered by younger sedimentary or volcanic rock.
4) Paraconformity- A contact between parallel layers formed by extended periods of non-deposition (as opposed to being formed by erosion).  These are sometimes called "pseudo unconformities").
Unconformities VS Bedding Planes
Unconformities represent huge gaps in time!  The nonconformity between the Vishnu Schist and overlying sedimentary layers in the Grand Canyon represents 1.3 billion years of missing rock record.
Bedding planes, or planes separating adjacent sedimentary layers, also represent gaps in the rock record but on a much smaller scale than an unconformity.
Relative Age Dating
Relative age dating is a way to use geometric relationships between rock bodies to determine the sequence of geologic events in an area.  Relative dating is different from absolute dating in which specific dates are assigned to geologic events (we will discuss absolute dating techniques later).
Relative dating is based on the five principles of stratigraphy discussed above.
Historical Perspective on the Origin of Rocks: Werner's Concept of Neptunism


Abraham Werner (1749-1817), a German geologist, proposed that Earth’s crust originated in ocean water through the process of precipitation.  This idea became known as Neptunism, in reference to the Roman God of the sea.


Werner classified rocks into 4 categories, as shown in the diagram below:

Figure by RJR

1. Primitive rock (red)– Granite and metamorphic rock were precipitated from oceans.

2. Transition rock (light brown)– Next, fossil-rich sedimentary rocks were precipitated.  These rocks are tilted due to deposition on the non-horizontal surfaces of primitive rocks.  This aspect of Werner's model was useful for explaining the origin of tilted sedimentary rocks.

3. Secondary rock (dark brown)– Flat lying sedimentary rocks were eventually precipitated.  The secondary rocks were thought to include interlayered basalts, which Werner thought formed by combustion of buried coal layers.

4. Tertiary (or alluvial) rock (yellow)– Finally, after the ocean receded, recent erosion and deposition created a thin veneer of overlying sediment.

Today we know that Werner's basic assumption that granite precipitated from seawater is incorrect.  We also know that basalt is not the product of coal combustion.

Nevertheless, Werner's concept of Neptunism was influential because:

1) Werener was right that some sedimentary rocks, such as limestones, do precipitate from ocean water.

2) Werner was not a catastrophist and did not need to make his interpretation of rock layers consistent with scriptual teachings.

3) Werner’s relative age assignments represents an early attempt to determine Earth's sequential history.
Historical Perspective on the Origin of Rocks: Hutton's Concept of Plutonism


The Scottish geologist James Hutton (1726-1797) argued that granite and basalt by solidification within the earth (as opposed to precipitating in from oceanwater).  This idea is known as Plutonism, in reference to the God of the deep underworld.

This concept of plutonism was supported by basalt melting/cooling experiments Sir James Hall conducted in 1792.  These experiments showed that the basalts form by the solidification of liquid magma.

Hutton viewed tilted strata as having been initially deposited horizontally, and then were subsequently deformed (tilted and folded) by the forces of Earth's internal heat engine.  He would argue that these forces gave rise to mountains.

Furthermore, he suggested that the mountains eroded to produce the sedimentary rocks we find in the rock record.

Hutton viewed the earth continually recycling itself with a balance between destruction and rejuvenation.  Mountains are created, eroded, and reformed.

Hutton’s ideas were not well received by people in the early 1800’s because he was a poor writer, and because his science was anti-catastrophic and did not support the scriptures.


Rain Shadow Effect