Friday, November 27, 2015

Numerical age and geologic time

Dating Sedimentary Rocks? 

The mind grows giddy gazing so far back into the abyss of time. John Playfair (1747–1819),  British geologist who popularized the works of Hutton.


We have seen that isotopic dating can be used to date the time when igneous rocks formed and when metamorphic rocks metamorphosed, but not when sedimentary rocks were deposited. So how do we determine the numerical age of a sedimentary rock? We must answer this question if we want to add numerical ages to the geologic column. Geologists obtain dates for sedimentary rocks by studying cross-cutting relationships between sedimentary rocks and datable igneous or metamorphic rocks. For example, if we find a sequence of sedimentary strata deposited unconformably on a datable granite, the strata must be younger than the granite  (figure above). If a datable basalt dike cuts the strata, the strata must be older than the dike. And if a datable volcanic ash buried the strata, then the strata must be older than the ash.

The Geologic Time Scale 

Geologists have searched the world for localities where they can recognize cross-cutting relations between datable igneous  
rocks and sedimentary rocks or for layers of datable volcanic rocks inter-bedded with sedimentary rocks. By isotopically dating the igneous rocks, they have been able to provide numerical ages for the boundaries between all geologic periods. For example, work from around the world shows that the Cretaceous Period began about 145 million years ago and ended 65 million years ago. So the Cretaceous sandstone bed in first figure was deposited during the middle part of the Cretaceous, not at the beginning or end. 


The discovery of new data may cause the numbers defining the boundaries of periods to change, which is why the term numerical age is preferred to absolute age. In fact, around 1995, new dates on rhyolite ash layers above and below the Cambrian-Precambrian boundary showed that this boundary occurred at 542 million years ago, in contrast to previous, less definitive studies that had placed the boundary at 570 million years ago. Figure above shows the currently favoured numerical ages of periods and eras in the geologic column as of 2009. This dated column is commonly called the geologic time scale. 

What Is the Age of the Earth? 

During the 18th and 19th centuries, before the discovery of isotopic dating, scientists came up with a great variety of clever solutions to the question, “How old is the Earth?”—all of which have since been proven wrong. Lord William Kelvin, a 19th century physicist renowned for his discoveries in thermodynamics, made the most influential scientific estimate of the Earth’s age of his time. Kelvin calculated how long it would take for the Earth to cool down from a temperature as hot as the Sun’s, and concluded that this planet is about 20 million years old. Kelvin’s estimate contrasted with those being promoted by followers of Hutton, Lyell, and Darwin, who argued that if the concepts of uniformitarianism and evolution were correct, the Earth must be much older. They argued that physical processes that shape the Earth and form its rocks, as well as the process of natural selection that yields the diversity of species, all take a very long time. Geologists and physicists continued to debate the age issue for many years. The route to a solution didn't appear until 1896, when Henri Becquerel announced the discovery of radioactivity. Geologists immediately realized that the Earth’s interior was producing heat from the decay of radioactive material. This realization uncovered one of the flaws in Kelvin’s argument: Kelvin had assumed that no new heat was produced after the Earth first formed. Because radioactivity constantly generates new heat in the Earth, the planet has cooled down much more slowly than Kelvin had calculated and could be much older. The discovery of radioactivity not only invalidated Kelvin’s estimate of the Earth’s age, it also led to the development of isotopic dating. Since the 1950s, geologists have scoured the planet to identify its oldest rocks. Rocks younger than 3.85 Ga are fairly common. Rock samples from several localities (Wyoming, Canada, Greenland, and China) have yielded dates as old as 4.03 Ga. (Recall that “Ga” means “billion years ago.”) Individual clastic grains of the mineral zircon have yielded dates of up to 4.4 Ga, indicating that rock as old as 4.4 Ga did once exist. Isotopic dating of Moon rocks yields dates of up to 4.50 Ga, and dates on meteorites have yielded ages as old as 4.57 Ga. Geologists consider 4.57-Ga meteorites to be fragments of planetesimals like those from which the Earth first formed. Thus, these dates are close to the age of the Earth’s birth, for models of the Earth’s formation assume that all objects in the Solar System developed at roughly the same time from the same nebula. Why don’t we find rocks with ages between 4.03 and 4.57 Ga in the Earth’s crust? Geologists have come up with several ideas to explain the lack of extremely old rocks. One idea comes from calculations defining how the temperature of our planet has changed over time. These calculations indicate that during the first half-billion years of its existence, the Earth might have been so hot that rocks in the crust remained above the closure temperature for minerals, and isotopic clocks could not start “ticking.” Another idea comes from studies of cratering events on other moons and planets. These studies indicate that the inner planets were bombarded so intensely by meteorites at about 4.0 Ga that almost all crust formed earlier than 4.0 Ga was completely destroyed.

Picturing Geologic Time 

The number 4.57 billion is so staggeringly large that we can’t begin to comprehend it. If you lined up this many pennies in a row, they would make an 87,400-km-long line that would wrap around the Earth’s equator more than twice. Notably, at the scale of our penny chain, human history is only about 100 city blocks long. Another way to grasp the immensity of geologic time is to equate the entire 4.57 billion years to a single calendar year. On this scale, the oldest rocks preserved on Earth date from early February, and the first bacteria appear in the ocean on February 21. The first Shelly invertebrates appear on October 25, and the first amphibians crawl out onto land on November 20. On December 7, the continents coalesce into the super-continent of Pangaea. Birds and the ancestors of mammals  appear about December 15, along with the dinosaurs, and the Age of Dinosaurs ends on December 25. The last week of December represents the last 65 million years of Earth history, including the entire Age of Mammals. The first human-like ancestor appears on December 31 at 3  p.m., and our species, Homo sapiens, shows up an hour before midnight. The last ice age ends a minute before midnight, and all of recorded human history takes place in the last  30 seconds. To put it another way, human history occupies the last 0.000001% of Earth history. The Earth is so old that there has been more than enough time for the rocks and life forms of Earth to have formed and evolved.