What is Oceanic Anoxic Event?
Oceanic anoxic event or anoxic event (anoxic conditions) allude to interims in the Earth's past where parts of seas get to be distinctly exhausted in oxygen (O2) at profundities over a substantial geographic region. Amid some of these occasions, euxinia, waters that contained H2S hydrogen sulphide, developed. Although anoxic event have not occurred for a huge number of years, the land record demonstrates that they happened commonly previously. Anoxic event harmonised with a few mass eradications and may have added to them. These mass eliminations incorporate some that geobiologists use as time markers in biostratigraphic dating. Many geologists trust maritime anoxic event are unequivocally connected to abating of sea flow, climatic warming, and lifted levels of nursery gasses. Scientists have proposed improved volcanism (the arrival of CO2) as the "focal outer trigger for euxinia".
Backgroud of Oceanic Anoxic Event
The concept of the oceanic anoxic event (OAE) was first proposed in 1976 by Seymour Schlanger (1927–1990) and geologist Hugh Jenkyns and arose from discoveries made by the Deep Sea Drilling Project (DSDP) in the Pacific Ocean. It was the finding of black carbon-rich shales in Cretaceous sediments that had accumulated on submarine volcanic plateaus (Shatsky Rise, Manihiki Plateau), coupled with the fact that they were identical in age with similar deposits cored from the Atlantic Ocean and known from outcrops in Europe - particularly in the geological record of the otherwise limestone-dominated Apennines chain in Italy - that led to the realisation that these widespread similar strata recorded highly unusual oxygen-depleted conditions in the world ocean during several discrete periods of geological time.
Sedimentological investigations of these organic-rich sediments, which have continued to this day, typically reveal the presence of fine laminations undisturbed by bottom-dwelling fauna, indicating anoxic conditions on the sea floor, believed to be coincident with a low lying poisonous layer of hydrogen sulphide. Furthermore, detailed organic geochemical studies have recently revealed the presence of molecules (so-called biomarkers) that derive from both purple sulphur bacteria and green sulphur bacteria: organisms that required both light and free hydrogen sulphide (H2S), illustrating that anoxic conditions extended high into the illuminated upper water column.
There are currently several places on earth that are exhibiting the features of anoxic events on a localised scale such as algal/bacterial blooms and localised "dead zones". Dead zones exist off the East Coast of the United States in the Chesapeake Bay, in the Scandinavian strait Kattegat, the Black Sea (which may have been anoxic in its deepest levels for millennia, however), in the northern Adriatic as well as a dead zone off the coast of Louisiana. The current surge of jellyfish worldwide is sometimes regarded as the first stirrings of an anoxic event. Other marine dead zones have appeared in coastal waters of South America, China, Japan, and New Zealand. A 2008 study counted 405 dead zones worldwide.
This is a recent understanding. This picture was only pieced together during the last three decades. The handful of known and suspected anoxic events have been tied geologically to large-scale production of the world's oil reserves in worldwide bands of black shale in the geologic record. Likewise the high relative temperatures believed linked to so called "super-greenhouse events".
Euxinia
Oceanic anoxic events with euxinic (i.e. sulphide) conditions have been linked to extreme episodes of volcanic out-gassing. Thus, volcanism contributed to the buildup of CO2 in the atmosphere, increased global temperatures, causing an accelerated hydrological cycle that introduced nutrients to the oceans to stimulate planktonic productivity. These processes potentially acted as a trigger for euxinia in restricted basins where water-column stratification could develop. Under anoxic to euxinic conditions, oceanic phosphate is not retained in sediment and could hence be released and recycled, aiding continued high productivity.
Mechanism
Temperatures throughout the Jurassic and Cretaceous are generally thought to have been relatively warm, and consequently dissolved oxygen levels in the ocean were lower than today making anoxia easier to achieve. However, more specific conditions are required to explain the short-period (less than a million years) oceanic anoxic events. Two hypotheses, and variations upon them, have proved most durable.
One hypothesis suggests that the anomalous accumulation of organic matter relates to its enhanced preservation under restricted and poorly oxygenated conditions, which themselves were a function of the particular geometry of the ocean basin: such a hypothesis, although readily applicable to the young and relatively narrow Cretaceous Atlantic (which could be likened to a large-scale Black Sea, only poorly connected to the World Ocean), fails to explain the occurrence of coeval black shales on open-ocean Pacific plateaus and shelf seas around the world. There are suggestions, again from the Atlantic, that a shift in oceanic circulation was responsible, where warm, salty waters at low latitudes became hypersaline and sank to form an intermediate layer, at 500 to 1,000 m (1,640 to 3,281 ft) depth, with a temperature of 20 °C (68 °F) to 25 °C (77 °F).
The second hypothesis suggests that oceanic anoxic events record a major change in the fertility of the oceans that resulted in an increase in organic-walled plankton (including bacteria) at the expense of calcareous plankton such as coccoliths and foraminifera. Such an accelerated flux of organic matter would have expanded and intensified the oxygen minimum zone, further enhancing the amount of organic carbon entering the sedimentary record. Essentially this mechanism assumes a major increase in the availability of dissolved nutrients such as nitrate, phosphate and possibly iron to the phytoplankton population living in the illuminated layers of the oceans.
For such an increase to occur would have required an accelerated influx of land-derived nutrients coupled with vigorous upwelling, requiring major climate change on a global scale. Geochemical data from oxygen-isotope ratios in carbonate sediments and fossils, and magnesium/calcium ratios in fossils, indicate that all major oceanic anoxic events were associated with thermal maxima, making it likely that global weathering rates, and nutrient flux to the oceans, were increased during these intervals. Indeed, the reduced solubility of oxygen would lead to phosphate release, further nourishing the ocean and fuelling high productivity, hence a high oxygen demand - sustaining the event through a positive feedback.
Here is another way of looking at oceanic anoxic events. Assume that the earth releases a huge volume of carbon dioxide during an interval of intense volcanism; global temperatures rise due to the greenhouse effect; global weathering rates and fluvial nutrient flux increase; organic productivity in the oceans increases; organic-carbon burial in the oceans increases (OAE begins); carbon dioxide is drawn down due to both burial of organic matter and weathering of silicate rocks (inverse greenhouse effect); global temperatures fall, and the ocean–atmosphere system returns to equilibrium (OAE ends).
In this way, an oceanic anoxic event can be viewed as the Earth’s response to the injection of excess carbon dioxide into the atmosphere and hydrosphere. One test of this notion is to look at the age of large igneous provinces (LIPs), the extrusion of which would presumably have been accompanied by rapid effusion of vast quantities of volcanogenic gases such as carbon dioxide. Intriguingly, the age of three LIPs (Karoo-Ferrar flood basalt, Caribbean large igneous province, Ontong Java Plateau) correlates uncannily well with that of the major Jurassic (early Toarcian) and Cretaceous (early Aptian and Cenomanian–Turonian) oceanic anoxic events, indicating that a causal link is feasible.
Occurrence
Oceanic anoxic events most commonly occurred during periods of very warm climate characterised by high levels of carbon dioxide (CO2) and mean surface temperatures probably in excess of 25 °C (77 °F). The Quaternary levels, the current period, are just 13 °C (55 °F) in comparison. Such rises in carbon dioxide may have been in response to a great out-gassing of the highly flammable natural gas (methane) that some call an "oceanic burp". Vast quantities of methane are normally locked into the Earth's crust on the continental plateaus in one of the many deposits consisting of compounds of methane hydrate, a solid precipitated combination of methane and water much like ice. Because the methane hydrates are unstable, except at cool temperatures and high (deep) pressures, scientists have observed smaller "burps" due to tectonic events. Studies suggest the huge release of natural gas could be a major climatological trigger, methane itself being a greenhouse gas many times more powerful than carbon dioxide. However, anoxia was also rife during the Hirnantian (late Ordovician) ice age.
Oceanic anoxic events have been recognised primarily from the already warm Cretaceous and Jurassic Periods, when numerous examples have been documented, but earlier examples have been suggested to have occurred in the late Triassic, Permian, Devonian (Kellwasser event), Ordovician and Cambrian.
The Paleocene-Eocene Thermal Maximum (PETM), which was characterised by a global rise in temperature and deposition of organic-rich shales in some shelf seas, shows many similarities to oceanic anoxic events.
Typically, oceanic anoxic events lasted for less than a million years, before a full recovery.